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ABSTRACT

The effects of thermal imbalance (dS:1/d¢ # 0) on stellar pulsational stability have largely been
ignored in the literature. Here we have used the linear, quasi-adiabatic pulsation theory to make a
preliminary investigation of such effects. Analyses of the standard model and of a white dwarf show that,
for these cases, “ordinary” terms in the stability integrals greatly outweigh the “extra” terms considered
here. The latter become more important when substantial ionization zones exist in the stellar matter. It
is argued that the influence of thermal imbalance on pulsational stability should be quite small for stars
crossing the H-R diagram in early post-main-sequence evolution, and for cooling degenerate stars. On
the other hand, during pre-main-sequence contraction the thermal-imbalance terms are more likely to be
important, and for thermal runaways in shell-burning stars these terms are almost certainly crucial.

I. INTRODUCTION

In the familiar linear quasi-adiabatic theory of pulsations, developed in general form
by Thomas (1930), the rate of change of the dynamical energy of oscillation E may be
written (Ledoux 1958)

C2 dEN _ MU dS . M U dS, \
ITe;<Et—>_ -[asapaﬁgzdm-i-i.ofgs—a;;—dr(ép) dm (1)
2 4 S 9U
+1?€—”‘of<(p—pl)7_656p dm ,

where the angular brackets indicate a time average over the pulsation period; the sub-
script 1 denotes equilibrium quantities; U and .S are, respectively, the specific internal
energy and entropy of the gas; p is the mass density; and the quantity § preceding a
variable indicates a first-order departure from equilibrium.

In the stellar pulsations most commonly studied, the equilibrium entropy change

w-rl-5

where e is the rate of generation of nuclear energy and L, the luminosity at distance r
from the stellar center, is negligible, and the right side of equation (1) reduces to the first
integral with

is 1 9
15 = [ae - (aL,)] . )

For those epochs of stellar evolution during which dSy/d¢ £ 0 (thermal imbalance),
the expression (2) must be rewritten as

6% =7 [0z 61| - [ 5] ®)

and contributions from the second and perhaps the third integrals on the right side of
equation (1) considered. The latter integral was ignored by Thomas as vanishing in the
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mean; however, it was included by Ledoux, who pointed out that second-order contribu-
tions from it might subsist. :

The purpose of the present work is to consider both the second integral on the right
of equation (1) and the extra term introduced in the first integral due to the replacement
of equation (2) by equation (3). Because adiabatic evolution (dSi/dt = 0) is so often a
good approximation in calculations of stellar models, these terms have, with few excep-
tions, been ignored in the literature since the general review of Ledoux (1958). In what
follows, we shall attempt a preliminary investigation of the problem, proceeding through
the use of simple stellar models and semiquantitative estimates to get an idea of the
relative size of the thermal-imbalance terms and to draw some conclusions regarding
their importance in various phases of stellar evolution.

In § II we write equation (1) in more convenient form. Sections III and IV are de-
voted to evaluating the stability of the standard model and that of a cooling white dwarf,
respectively. In § V we consider what effects the presence of ionization zones in the
stellar matter might have, and in § VI discuss the results of the various calculations. The
final section considers two cases in which thermal-imbalance terms are likely to.be im-
portant, and for which further investigation should prove fruitful.

II. THE STABILITY INTEGRAL

Equation (1) gives the rate of gain or loss of pulsational energy over a cycle. Let us
define the first two integrals on the right-hand side as

M M
U as RU dS
[ 4o 1 27 O
Ur=J 550, "+ 1S 3557 7a
This represents the contribution to the pulsation analysis of the terms we will consider. L
In the usual notation we have
U T

(6p)*dm . G

and by using equation (3), we may rewrite equation (4) as

M M
e T — 1) % [ — 2 _ . 3e8T T, _ oL
L = { Ty — 1) 5 [6e o (5L,)]dm .()/f(ra 1) T [e am]dm

) BN
» dU 5_P>2 _ 9L, ’
T J 75507\ [‘ am]d’”

Let us now make the assumption that no sources or sinks of subatomic energy exist
in the stellar matter. In that event, if the pulsational quantities are defined as

-_6’ *_ap *
x_f’z_p’t_T, Lr,

and with the adiabatic condition
F=({;— 17,
we have
1 1
_— —_— * .l i —_ 2 _a;f *\2
_()/'(I‘a 1)z T (L,)dq + {(I‘s 1) 3 (z%)2dq o

1 9 o3
_ oy B BT
S 27 9507 3g © )’dq
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where f = L,/L and ¢ = m/M.
For future convenience we shall rewrite equation (6) as

L'p/L=5L+1,+J;,

where the integrals (including signs) are labeled in order. We shall call terms coming
from the first integral in equation (6) (subscript 1) the “ordinary” terms, while those
which arise from the other two integrals (subscript 2) will be referred to as “extra” or
“thermal-imbalance” terms.

A star is considered pulsationally stable if L'p/L < 0. In the event that contributions
from subatomic energy do exist in the star, one must evidently return to equation (5).

III. THE STANDARD MODEL
Following Eddington (1959), let us define the quantity n by the relation

f=mg.
Then, if « represents the opacity, the standard model is obtained for

nk = const .

For our analysis, we shall choose the combination

7 = const, « = const.

In that case, since f = ¢ = 1 at the stellar surface, we must have n = 1, and our choice
corresponds to a physically reasonable case of electron-scattering opacity, with luminos-
ity increasing linearly outward with mass fraction.

The standard model is a polytrope of index 3 with a constant ratio 8 of gas pressure to
total pressure through the star. The value of 8 depends only on the product M u?, where
p is the mean molecular weight of the matter, and may thus be chosen arbitrarily. All of
the nonpulsational quantities in equation (6) may be evaluated with the aid of Emden

" tables (British Association for the Advancement of Science 1932).

The relative pulsational amplitudes x*, z* of the standard model have been given by
Schwarzschild (1941) for various values of 8, in both the fundamental and higher modes.
We have chosen the lowest of these values of 8 in the fundamental mode as the combina-
tion most conducive to pulsational instability (see, e.g., Simon and Stothers 1969). This

is
B=0510, T;—1=0.372.

Furthermore, we may write

19 _Lor Lo

where, for a radiative star with constant opacity,
dat’

P =4+ )+ o

The remaining unexplicit quantity in equation (6) is

U F:] T T
3595 = a5l sl p @~ D] = @ =Dl — D — 1l
T 30
+p6p saﬁ(r3 1.
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With
aT*
1-— B = ?}; ’
we easily find
9B (1—8)
= —=[ — 4T — 1)], 7
2] == - - 1) Q)
and after some algebra
0 U _ W) = 3278° — 1128p° + 13128 — 512
2T 9Sop® ~— ! 9(8 — 7B)°

The function W;(B) is always negative, with endpoint values of —0.111, and a mini-
mum of —0.149 at 8~ 0.93. A glance at the last integral in equation (6) shows that
this term serves to energize pulsations as long as the luminosity increases outward, and
to damp pulsations as long as the luminosity decreases outward. For 8 = 0.510, we
have W,(8) = —0.119.

We are now in a position to evaluate L p/L Results are displayed in Table 1. It is
easily seen that contributions arising from the additional term in B(dS/ dt)(I;) and from
the integral J, are approximaiely equal, and both contribute to energizing the pulsation,

TABLE 1 .
VALUES OF THE STABILITY INTEGRALS

Model I, I, J2 L'p/L
Standard
model... ... — 4.8 0.20 0.18 — 4.4
White dwarf.. —18 . 1.6 1.3 —15

Their combined effect, however, is quite small, amounting to less than 8 percent of the
ordinary damping.
IV. WHITE DWARF

We shall discuss here the model of Marshak (1940) treated by Ledoux and Sauvenier-
Goffin (1950). Though somewhat outdated, this model is quite adequate for our pur-
poses. In particular, the luminosity distribution f(g) is rather similar to that obtained
from more modern treatments of cooling white dwarfs (e.g., Vila 1969).

Following Ledoux and Sauvenier-Goffin, we shall take

3" = —3x" =const,, "= (Ir— 1)3",
where
x4 2
Pr—1-= 3(x2 4+ 1)’

and x is the ratio of the Fermi momentum to mec.
We begin with the second integral in equation (6). Integrating by parts, we obtain

I, = 4(«")* — 18(06*)26/' (Tr — Dfd(Tr = 1),

where we have taken I'r — 1 = % at the stellar surface. Given the model parameters,
we may easily evaluate the integral, obtaining I, = 1.6(x")2
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Turning now to J», we must calculate
*U d T
35S0  opls [7 (Fr — 1)]
T T ox| o
= (I'r — 1);5[(I‘T— 1) — 1J+——~ 550'(11’!'— 1).

Using the familiar expressions for a degenerate electron gas (Chandrasekhar 1939) and
retaining only terms of lowest order in (2T/mc?), we find

9| _ %
dpls 3p’
and finally,
P BU _ _ 2+ T7a2 42
795072 = W = ~ Tga 1y
This function falls to a minimum of —0.153 at x = 1. At the endpoints (x = 0,2 — «),
Wo(x) = —0.111. Since Wy(x) < 0, it turns out again that, for luminosity increasing

outward, J, is an energizing term.
We have for the present case

Jo = =0 S Wa®)df

The values of x for our model range from 2.4 at the center to 0.4 at the surface, encom-
ﬁ)assmg values of |Wy(x)| in the narrow range 0.13-0.15. Using an average value
Wa(x)! = 0.14, we obtain

Jo = 13(06*)2 .
The remaining term in equation (6) is given by Ledoux and Sauvenier-Gofhn:
I, = —18(x")2.

Setting #* = 1, we again summarize our results in Table 1. In the present case, as
with the standard model, the contributions 7, = 1.6 and J; = 1.3 both serve to energize,
and are roughly equal. Here, however, their effect is somewhat more important, off-
setting about 16 percent of the ordinary damping.

V. IONIZATION ZONES

When ionization zones cover substantial regions of the stellar matter, the pulsational
stability of a star can be strongly affected. In the absence of thermal imbalance, such
effects have been studied in the literature in great detail.

When thermal imbalance exists in a star, the terms I, and J, begin to contribute, and
they are affected by ionization through the thermodynamic coefficients (I's — 1) and
(p*/2T)3*U/ S dp?. (It should be noted that the quasi-adiabatic theory may not be
adequate here, depending upon the location of the ionization zones in a given star. The
theory should be good enough, however, to give us some picture of the relative im-
portance of thermal imbalance to the pulsational stability.)

If, in the presence of ionization zones, we impose the restriction that only one critical
state of ionization exists in a given range of temperature and density, then we may write
(Ledoux 1958)

[16 — 128 — 1.562 + B(4 — 1.58 + Bh) Ar,pll1 4+ 4, r]
12 — 10.58 + B(1.5 + W) Az,

Iy =
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864 NORMAN R. SIMON
r_ g Ti=BU+ 4,)
’ (4 — 36) + BAr,’
where . 4t )
-__B_ —8
Apr=— 155, Ar,=1op0S+R, Are=B25+h+22].

Further, if X represents the abundance (by number) of the element with critical
ionization, y the fraction of the electrons in question that have been removed, and x the
total number of free electrons per ion, then

Xxy(1 — )
w1+ 2) + Xy1—y)°

The quantity % is the ratio of the ionization potential to kT': k& = x/kT.
Once more, we must calculate the quantity

G e = Wile, 1) = AT = D@ — ) — U+ 30| @ - D. ®

B =

2T 8S5dp?
The necessary derivatives are (083/dp)s, given once more by equation (7), and
9 14+« '
) S0 g0+ - D4
_ dplg p

Finally, after cumbersome but straightforward computation we obtain

3 1?1 » [@—1) = [(1 — B)[I1 — 4(Ts — 1][6 + Ar,,(6 — 4h)]

(1 + x)Ar,

+B6(1 —8) — (4= 38 {7 s

[(Ts — (1.5 + k) — 1] + h(Ts — 1) 4,2}

+ B(Ts — Dhdr,J4 — 38 + B4r,] ]J12 — 10.58 + B(15 + B) 4r,I"2,

where

o= Lt 01— 2) + [Xy(1 — »P — Xa?y(1 — y)
[x(1 + x) + Xy(1 — )P '

To get some idea of the size of Ws(p, T), we have calculated it for a range of densities
and temperatures for four different cases of critical ionization: H 1, He 1, He 11, and C v1.
The ratio of partition functions for the states involved was always taken to be the ratio
of statistical weights. The latter quantities, along with values for ionization potentials,
were taken from Unsold (1955). In each case a composition consisting solely of the ele-
ment in question was assumed for simplicity. This means, of course, that the.effect of
the ionization zones will be overestimated.

Table 2 presents these results. The last entry in the table is the ratio

W3(P’ T)
(T — 1)*°

Since ordinary damping terms (at least for the case of radiative damping) as well as the
integral I will be proportional to (T's — 1)?, the quantity R gives some guide as to the
importance of the last integral in equation (6).

In evaluating Table 2, it will be useful to compare W3(p, T') with the quantities W,(8)
and Wy(x) calculated in previous sections. We first note that W3 is not necessarily nega-

R =
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tive. In certain regions, the derivative [3(I's — 1)/9 In p]s can become positive and large
enough to outweigh the first term in equation (8). This happens in general for large
positive Q and for 8~ 1. In that case, a star with luminosity increasing outward would
tend to be damped (and one with luminosity decreasing outward, to be energized) by
the last integral in equation (6). However, this effect seems to occur in a relatively small
part of the (p, T)-plane. Overall, those regions with W3 < 0 are likely to dominate,
giving a result qualitatively the same as in the absence of ionization zones.

Perhaps a more important difference involves the size of the effect. We see from Table
2 that W3 can become quite large in absolute value, exceeding the maximum values of
|W1| and |W,]| by a factor as great as 3. Furthermore, the ratio R attains large negative
values (e.g., for He 1, log p = —8, log T' = 4.2), particularly in low density regions. The
largest values occur for I's — 1 < 0.1, and run as high as R = —5.78 for the cases calcu-
lated. (As one goes to ionizations with larger potentials, e.g., C v1, the effect begins to
diminish. This is due to increasing domination by radiation pressure in the low-density
regions, and to the fact that the ratio x of electrons to ions is increasing. In fact, as
B— 0 or x— o, W;— W,..) The corresponding ratios for W, and W, can never exceed
unity in absolute value, and are generally much smaller.

Thus it turns out that the thermodynamics of ionization zones is such that the con-
tribution to stability analysis of ‘“thermal-imbalance” terms may become greatly en-
hanced. Whether this actually happens depends, of course, on the detailed properties of
the stars in question. We shall have more to say about this in the next section.

VI. DISCUSSION

Up to now we have seen that the thermal-imbalance terms investigated will, in gen-
eral, tend to energize pulsations in stars with luminosity increasing outward. This will
be the case for gravitationally contracting stars or for stars experiencing thermal cooling.
Expansion, on the other hand, will tend to damp pulsations.

In §§ III and IV it has been shown for two different cases that the extra terms make
a small contribution compared with that from ordinary damping terms. It is simple and
instructive to compare these extra terms further with the energizing due to nuclear re-
actions. For the case of the white dwarf, Ledoux and Sauvenier-Goffin (1950) have
shown that nuclear energizing would be enough to overcome the damping for very
modest values of the temperature exponent » (v = 9.5 for a core source; v = 2.6 for a
shell source). Thus, this energizing is at least 6 times as effective as the thermal-imbal-
ance contributicn given in Table 1.

For the standard model, a comparison is not so straightforward. However, since,
apart from the temperature exponent, the amount of nuclear energizing will depend
mainly on the size of pulsational amplitudes in the burning region (let us say in the core)
it seems reasonable to compare the standard model with a model having a similar value
of relative radius amplitude at its center. One such model in the literature is that of a
28.2 M o main-sequence star (Schwarzschild and Hirm 1958). It has a central radius
amplitude x*. = 0.39, while the value for standard model of § III is x*, = 0.32. With a
temperature exponent » = 13, Schwarzschild and Hirm (1959) found nuclear energizing
Lpn/L — 4.4—a value more than an order of magnitude larger than that due to thermal
imbalance in the standard model (Table 1).

The above comparisons are, of course, somewhat artificial, since (1) any region of a
star in nuclear thermal equilibrium (dS;/dt = 0) cannot contribute to the thermal-im-
balance terms and (2) the standard model could not represent in detail a star with physi-
cally reasonable nuclear processes. Nevertheless, we may safely say that, given the
thermodynamics of §§ ITI and IV, ordinary pulsation terms will tend greatly to out-
weigh thermal-imbalance terms, with the latter providing only relatively small correc-
tions.

For the thermodynamics of § V (ionization zones) the outlook changes somewhat.
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We have seen in this case that the coefficient |W3| can become relatively large, tending
to enhance the contribution due to thermal imbalance. On the other hand, such effects
occur mainly in diffuse regions, where the density is low. The classic example is in the
ordinary Cepheid variables. In the well-known modern calculations of Cepheid variabil-
ity (Christy 1966a, Baker and Kippenhahn 1965), thermal imbalance is ignored, and the
equilibrium luminosity taken as constant in the energizing region. Because of the ex-
treme central condensation of Cepheid models, only the outer 1 or 2 percent of the stellar
mass is affected by the pulsation (Christy 1966b), and even if thermal imbalance does
exist in these layers, it is hardly to be expected that they contribute enough luminosity
to affect the stability significantly.

Further, it seems possible on the basis of our results to rule out important contribu-
tions for any star expanding or contracting across the H-R diagram during normal
post-main-sequence evolution, at least through core helium burning. Although con-
siderable regions of such stars can be in a state of thermal imbalance (see, e.g., Tben
1966), the central condensation of these objects (p./{p> > 103-10%, as compared with
p./{p> = 54 for the standard model) is such that radiative damping will almost certainly
crush any of the extra terms we have considered.

Similarly, cooling degenerate bodies such as white dwarfs are highly unlikely to be-
come pulsationally unstable as a result of contributions from thermal imbalance, such
contributions being simply too small to overcome damping in the thin radiative zones
at the surface of these stars.

VII. AREAS FOR FUTURE WORK

We begm this section by noting that our investigation remains incomplete because of
the omission of the last integral in equation (1). However, there are reasons to believe
that inclusion of this term will not change qualitatively the conclusions of the previous
section. Calling the integral in question LK, taking the time average, and normalizing
with the luminosity, we obtain

- —J‘(ra— 4 ‘5") dq,

where (3p/p)2 indicates the surviving time- averaged second-order amplitudes.

We have already seen in the cases studied that the integrals 7, and J, prov1de small
approximately equal contributions. Since we must expect that (8p/p). = (z*)? it follows
that K, = I, or Js, or perhaps is somewhat larger due to the relative largeness of (I'; — 1)
compared with the thermodynamic coefficients of I, and Ja. Even if the integral K,
proved to have the same sign as I, and J; in the cases 1nvest1gated it would need to be
nearly 10 times larger for the white dwarf and more than 20 times larger than I, or
J, for the standard model in order to qualitatively affect the stability. Although a full
second-order theory must be developed to evaluate the size of K, exactly, such large
values seem unlikely.

On the other hand, when the terms I, and J; begin to become comparable to the ordl-
nary damping or energizing terms, the integral K, must obviously be considered in
detail. We shall suggest two stages of stellar evolution for which this may be the case:

1. Thermally unstable shell-burning stars.—Rose has found that certain thermally
unstable models become pulsationally unstable as well, for both helium (Rose 1967) and
hydrogen (Rose 1968) shell burning. The seat of the instability is strongly enhanced
nuclear energizing arising from a thermal runaway in the shell. However, the flood of
photons released in the shell is almost totally absorbed in the expanding layers above,
with the luminosity dropping by orders of magnitude from shell to surface. Although
Rose has not published the runs of luminosity or pulsational amplitudes, he does give
enough information to enable us to put limits on 7, and J, for his unstable models.
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Table 3 shows the relevant quantities for two typical models, 3B (Rose 1967) and
2A (Rose 1968). The entries are, in order, the shell and surface luminosities, the relative
pressure amplitudes p* = §P/P, the nuclear energizing N; (normalized by L), and the
ordinary damping ;. The last two entries give limits on the thermal-imbalance terms.
The following paragraphs show how these limits were calculated.

Since the envelopes of Rose’s models are either nondegenerate or only slightly de-
generate, we have used (I's — 1)? and W(B) as the thermodynamic coefficients for I and
J, respectively, and have set 8 = 1 for simplicity. Using these quantities and neglecting
fourtace With respect to fsnen, we obtain

I+ Ja = =% famen{(p°)?), 9

where {(p*)?) is an average over the envelope luminosity distribution, and fuen =
Ly/L.

The sum (9) is negative (i.e., a damping term), as we expect for luminosity decreasing
outward. Using the limiting values of (p*)? as given by Rose, we obtain the last two
entries in Table 3.

TABLE 3
PULSATIONAL CHARACTERISTICS FOR TWO THERMALLY

UNSTABLE MODELS: 3B (Rose 1967) AND 2A
(Rose 1968)

Variable 3B 2A
Ly/LO......... 1.5X 108 2 X1o0¢
L/ILO.......... 110 200
p* (surface). .... - 12 — 15
p* (shell)....... - 0.29 — 0.50
Nyoooooo oo 3.5%X108 50
) ST — 4.5 — 6.3
Te+T)min - - —  2.4X10? — 5.0
(0 7% N 1) N — 4.0X103% — 4.5X103

Consider the minimum damping due to thermal imbalance (I; 4+ J2)min. For model
2A it is comparable to the ordinary damping 7, while for 3B it far exceeds 7;. In both
cases the nuclear energizing dominates, so there is no qualitative effect. On the other
hand, if we use the upper limit (73 + J2)max, the thermal-imbalance damping completely
overwhelms all other terms and the instability is nullified. Because pulsational ampli-
tudes will tend to drop off rapidly from the surface inward, the true value of I, 4 J, is
probably closer to the lower limit than to the upper limit. However, the size of even
the minimum terms indicate that thermal-imbalance contributions must be taken into
account in any evaluation of the pulsational stability during a thermal runaway. To do
this will require a full second-order theory.

2. Stars in pre-main-sequence contraction.—Here instability is favored by three
characteristics: (1) a large percentage of the luminosity is provided by gravitational
contraction; (2) the central condensation is lowered substantially by the influence of
convection; and (3) deep ionization zones can exist in such stars, depending on mass and
the state of evolution. Detailed models of pre-main-sequence contraction have been
constructed by Iben (1965) and Ezer and Cameron (1967).

A start on a stability analysis for such stars has been made by Kato and Unno (1967)
and Okamoto (1967). The former authors developed a second-order theory and, with
the aid of a number of restrictive assumptions, managed to write the stability integrals
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(1) in approximate form. This form was in turn used by Okamoto to test the stability
of a fully convective homologously contracting polytrope of index 1.5. Tonization ZOnes
were neglected.

Emphasizing the tentative nature of the calculation, Okamoto concluded that stars
with masses <2 Mo were probably pulsationally unstable against energization due to
thermal imbalance. Establishment of this conclusion must await the development of a
full second-order theory including all the terms in equation (1). " ,
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